Tag: multimedia

 
+

A VLSI Architecture for Video Object Motion Estimation Using a 2D Hierarchical Mesh Model

This paper proposes a novel hierarchical mesh-based video object model and a motion estimation architecture that generates a content-based video object representation. The 2D mesh-based video object is represented using two layers: an alpha plane and a texture. The alpha plane consists of two layers: (1) a mesh layer and (2) a binary layer that defines the object boundary. The texture defines the object’s colors. A new hierarchical adaptive structured mesh represents the mesh layer. The proposed mesh is a coarse-to-fine hierarchical 2D mesh that is formed by recursive triangulation of the initial coarse mesh geometry. The proposed technique reduces the mesh code size and captures the mesh dynamics. The proposed motion estimation architecture generates a progressive mesh code and the motion vectors of the mesh nodes. The performance analysis for the proposed video object representation and the proposed motion estimation architecture shows that they are suitable for very low bit rate online mobile applications and the motion estimation architecture can be used as a building block for MPEG4 codec.

Wael Badawy, “A VLSI Architecture for Video Object Motion Estimation Using a 2D Hierarchical Mesh Model,” Microprocessors and Microsystems, Vol. 27, No. 3, April 2003, pp 131 – 140, invited.

+

A new time distributed DCT architecture for MPEG-4 hardware reference model

This paper presents the design of a new time distributed architecture (TDA) which outlines the architecture (ISO/IEC JTC1/SC29/WG11 MPEG2002/M8565) submitted to MPEG4 Part9 committee and included in the ISO/IEC JTC1/SC29/WG11 MPEG2002/9115N document. The proposed TDA optimizes the two-dimensional discrete cosine transform (2-D-DCT) architecture performance. It uses a time distribution mechanism to exploit the computational redundancy within the inner product computation module. The application specific requirements of input, output and coefficients word length are met by scheduling the input data. The coefficient matrix uses linear mappings to assign necessary computation to processor elements in both space and time domains. The performance analysis shows performance savings in excess of 96% as compared to the direct implementation and more than 71% as compared to other optimized application specific architectures for DCT.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:15 ,  Issue: 5 )

Alam, M.; Badawy, W.; Jullien, G.; “A new time distributed DCT architecture for MPEG-4 hardware reference model,” IEEE Circuits and Systems for Video Technology, Volume 15, Issue 5, May 2005, pp. 726 – 730.

+

A VLSI Architecture for Video Object Motion Estimation Using a 2D Hierarchical Mesh Model

This paper proposes a novel hierarchical mesh-based video object model and a motion estimation architecture that generates a content-based video object representation. The 2D mesh-based video object is represented using two layers: an alpha plane and a texture. The alpha plane consists of two layers: (1) a mesh layer and (2) a binary layer that defines the object boundary. The texture defines the object’s colors. A new hierarchical adaptive structured mesh represents the mesh layer. The proposed mesh is a coarse-to-fine hierarchical 2D mesh that is formed by recursive triangulation of the initial coarse mesh geometry. The proposed technique reduces the mesh code size and captures the mesh dynamics. The proposed motion estimation architecture generates a progressive mesh code and the motion vectors of the mesh nodes. The performance analysis for the proposed video object representation and the proposed motion estimation architecture shows that they are suitable for very low bit rate online mobile applications and the motion estimation architecture can be used as a building block for MPEG4 codec.

Wael Badawy, “A VLSI Architecture for Video Object Motion Estimation Using a 2D Hierarchical Mesh Model,” Microprocessors and Microsystems, Vol. 27, No. 3, April 2003, pp 131 – 140, invited.

+

A new time distributed DCT architecture for MPEG-4 hardware reference model

This paper presents the design of a new time distributed architecture (TDA) which outlines the architecture (ISO/IEC JTC1/SC29/WG11 MPEG2002/M8565) submitted to MPEG4 Part9 committee and included in the ISO/IEC JTC1/SC29/WG11 MPEG2002/9115N document. The proposed TDA optimizes the two-dimensional discrete cosine transform (2-D-DCT) architecture performance. It uses a time distribution mechanism to exploit the computational redundancy within the inner product computation module. The application specific requirements of input, output and coefficients word length are met by scheduling the input data. The coefficient matrix uses linear mappings to assign necessary computation to processor elements in both space and time domains. The performance analysis shows performance savings in excess of 96% as compared to the direct implementation and more than 71% as compared to other optimized application specific architectures for DCT.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:15 ,  Issue: 5 )

Alam, M.; Badawy, W.; Jullien, G.; “A new time distributed DCT architecture for MPEG-4 hardware reference model,” IEEE Circuits and Systems for Video Technology, Volume 15, Issue 5, May 2005, pp. 726 – 730.