Tag: current conveyor
A Novel Current-Mode Instrumentation Amplifier Based on Operational Floating Current Conveyor,
This paper presents a novel current-mode instrumentation amplifier (CMIA) that utilizes an operational floating current conveyor (OFCC) as a basic building block. The OFCC, as a current-mode device, shows flexible properties with respect to other current- or voltage-mode circuits. The advantages of the proposed CMIA are threefold. First, it offers a higher differential gain and a bandwidth that is independent of gain, unlike a traditional voltage-mode instrumentation amplifier. Second, it maintains a high common-mode rejection ratio (CMRR) without requiring matched resistors, and finally, the proposed CMIA circuit offers a significant improvement in accuracy compared to other current-mode instrumentation amplifiers based on the current conveyor. The proposed CMIA has been analyzed, simulated, and experimentally tested. The experimental results verify that the proposed CMIA outperforms existing CMIAs in terms of the number of basic building blocks used, differential gain, and CMRR.
Published in:
Instrumentation and Measurement, IEEE Transactions on (Volume:54 , Issue: 5 )
- Page(s):
- 1941 – 1949
- ISSN :
- 0018-9456
- INSPEC Accession Number:
- 8601828
- DOI:
- 10.1109/TIM.2005.854254
- Date of Publication :
- Oct. 2005
- Date of Current Version :
- 03 October 2005
- Issue Date :
- Oct. 2005
- Sponsored by :
- IEEE Instrumentation and Measurement Society
- Publisher:
- IEEE
Yehya H. Ghallab, and Wael Badawy, Karan V.I.S. Kaler and Brent J. Maundy, “A Novel Current-Mode Instrumentation Amplifier Based on Operational Floating Current Conveyor,” IEEE Transaction on Instrumentation and Measurement, Volume 4, October 2005, pp. 1941 – 1949.
A New Topology for a Current-mode Wheatstone Bridge
This paper presents a new topology for a current-mode Wheatstone bridge (CMWB) that uses an operational floating current conveyor (OFCC) as a basic building block. The proposed CMWB has been analyzed, simulated, implemented, and experimentally tested. The experimental results verify that the proposed CMWB outperforms existing CMWBs in terms of accuracy. A new CMWB linearization technique based on OFCC has been proposed, used, analyzed, and tested. The advantages of the proposed CMWB are fourfold. Firstly, it reduces the number of sensing passive elements; i.e., we can use two resistors instead of four and get the same performance as the traditional voltage-mode implementation. Secondly, we can apply the superposition principle without adding signal conditioning circuitry; therefore, the addition of sensor effects is possible. Thirdly, it has a higher common-mode cancellation. Finally, the proposed CMWB topology offers a significant improvement in accuracy compared to other CMWBs
Published in:
Circuits and Systems II: Express Briefs, IEEE Transactions on (Volume:53 , Issue: 1 )
- Page(s):
- 18 – 22
- ISSN :
- 1549-7747
- INSPEC Accession Number:
- 8954914
- DOI:
- 10.1109/TCSII.2005.854589
- Date of Publication :
- Jan. 2006
- Date of Current Version :
- 16 January 2006
- Issue Date :
- Jan. 2006
- Sponsored by :
- IEEE Circuits and Systems Society
- Publisher:
- IEEE
Yehya H. Ghallab, and Wael Badawy ” A New Topology for a Current-mode Wheatstone Bridge” IEEE Transaction on Circuit and System II, Volume 53, No.1, pp. 18-22, January 2006.
Link to the list of other Peer Journal Publications
The Operational Floating Current Conveyor and Its Application
A five-port general-purpose analog building block, termed as an Operational Floating Current Conveyor (OFCC), is described. The OFCC combines the features of current feedback operational amplifier, second-generation current conveyor and operational floating conveyor. An implementation scheme of the OFCC is described and its terminal operational characteristics are used to yield a working device. The OFCC is then used as a single block to realize the current conveyors (CCII+ and CCII-) as well as the four basic amplifiers (i.e., voltage, current, transconductance, and transresistance amplifiers). The applications of the OFCC are presented and discussed. In the field of the analog filter synthesis, we proposed a new active universal second order filter using OFCC. It has three inputs and one output employing two OFCC, two capacitors and three resistors and can realize lowpass, bandpass, highpass, notch, and all pass filters from the same configuration. The proposed universal filters offer the following advantageous features: using active elements for the same type (OFCC). No requirement for component matching or cancellation constraints, which makes the filter easier to design, orthogonal adjustment of ω0 and Q and the circuits have low sensitivity. The simulation and experimental results are obtained and discussed.
Read More: https://www.worldscientific.com/doi/abs/10.1142/S0218126606003118
Link to the list of other Peer Journal Publications
Yehya Ghallab, Wael Badawy, M. Abo El-Ella, and M. Elsaid, “The Operational Floating Current Conveyor and Its Application“, Journal of Circuits, Systems and Computers, Volume 15, No. 3, June 2006, pp. 351–372.
A Novel Current-Mode Instrumentation Amplifier Based on Operational Floating Current Conveyor,
This paper presents a novel current-mode instrumentation amplifier (CMIA) that utilizes an operational floating current conveyor (OFCC) as a basic building block. The OFCC, as a current-mode device, shows flexible properties with respect to other current- or voltage-mode circuits. The advantages of the proposed CMIA are threefold. First, it offers a higher differential gain and a bandwidth that is independent of gain, unlike a traditional voltage-mode instrumentation amplifier. Second, it maintains a high common-mode rejection ratio (CMRR) without requiring matched resistors, and finally, the proposed CMIA circuit offers a significant improvement in accuracy compared to other current-mode instrumentation amplifiers based on the current conveyor. The proposed CMIA has been analyzed, simulated, and experimentally tested. The experimental results verify that the proposed CMIA outperforms existing CMIAs in terms of the number of basic building blocks used, differential gain, and CMRR.
Published in:
Instrumentation and Measurement, IEEE Transactions on (Volume:54 , Issue: 5 )
- Page(s):
- 1941 – 1949
- ISSN :
- 0018-9456
- INSPEC Accession Number:
- 8601828
- DOI:
- 10.1109/TIM.2005.854254
- Date of Publication :
- Oct. 2005
- Date of Current Version :
- 03 October 2005
- Issue Date :
- Oct. 2005
- Sponsored by :
- IEEE Instrumentation and Measurement Society
- Publisher:
- IEEE
Yehya H. Ghallab, and Wael Badawy, Karan V.I.S. Kaler and Brent J. Maundy, “A Novel Current-Mode Instrumentation Amplifier Based on Operational Floating Current Conveyor,” IEEE Transaction on Instrumentation and Measurement, Volume 4, October 2005, pp. 1941 – 1949.
A New Topology for a Current-mode Wheatstone Bridge
This paper presents a new topology for a current-mode Wheatstone bridge (CMWB) that uses an operational floating current conveyor (OFCC) as a basic building block. The proposed CMWB has been analyzed, simulated, implemented, and experimentally tested. The experimental results verify that the proposed CMWB outperforms existing CMWBs in terms of accuracy. A new CMWB linearization technique based on OFCC has been proposed, used, analyzed, and tested. The advantages of the proposed CMWB are fourfold. Firstly, it reduces the number of sensing passive elements; i.e., we can use two resistors instead of four and get the same performance as the traditional voltage-mode implementation. Secondly, we can apply the superposition principle without adding signal conditioning circuitry; therefore, the addition of sensor effects is possible. Thirdly, it has a higher common-mode cancellation. Finally, the proposed CMWB topology offers a significant improvement in accuracy compared to other CMWBs
Published in:
Circuits and Systems II: Express Briefs, IEEE Transactions on (Volume:53 , Issue: 1 )
- Page(s):
- 18 – 22
- ISSN :
- 1549-7747
- INSPEC Accession Number:
- 8954914
- DOI:
- 10.1109/TCSII.2005.854589
- Date of Publication :
- Jan. 2006
- Date of Current Version :
- 16 January 2006
- Issue Date :
- Jan. 2006
- Sponsored by :
- IEEE Circuits and Systems Society
- Publisher:
- IEEE
Yehya H. Ghallab, and Wael Badawy ” A New Topology for a Current-mode Wheatstone Bridge” IEEE Transaction on Circuit and System II, Volume 53, No.1, pp. 18-22, January 2006.
Link to the list of other Peer Journal Publications
The Operational Floating Current Conveyor and Its Application
A five-port general-purpose analog building block, termed as an Operational Floating Current Conveyor (OFCC), is described. The OFCC combines the features of current feedback operational amplifier, second-generation current conveyor and operational floating conveyor. An implementation scheme of the OFCC is described and its terminal operational characteristics are used to yield a working device. The OFCC is then used as a single block to realize the current conveyors (CCII+ and CCII-) as well as the four basic amplifiers (i.e., voltage, current, transconductance, and transresistance amplifiers). The applications of the OFCC are presented and discussed. In the field of the analog filter synthesis, we proposed a new active universal second order filter using OFCC. It has three inputs and one output employing two OFCC, two capacitors and three resistors and can realize lowpass, bandpass, highpass, notch, and all pass filters from the same configuration. The proposed universal filters offer the following advantageous features: using active elements for the same type (OFCC). No requirement for component matching or cancellation constraints, which makes the filter easier to design, orthogonal adjustment of ω0 and Q and the circuits have low sensitivity. The simulation and experimental results are obtained and discussed.
Read More: https://www.worldscientific.com/doi/abs/10.1142/S0218126606003118
Link to the list of other Peer Journal Publications
Yehya Ghallab, Wael Badawy, M. Abo El-Ella, and M. Elsaid, “The Operational Floating Current Conveyor and Its Application“, Journal of Circuits, Systems and Computers, Volume 15, No. 3, June 2006, pp. 351–372.